Regensburg 2016 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 27: Poster - Statistical Physics, Critical Phenomena, Brownian motion
DY 27.12: Poster
Dienstag, 8. März 2016, 18:15–21:00, Poster C
Effective Perrin Theory for a Liquid of Infinitely Thin Brownian Needles — •Sebastian Leitmann1, Felix Höfling2, and Thomas Franosch1 — 1Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria — 2Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany, and Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
Liquids of infinitely thin Brownian needles of length L are considered up to reduced densities of n*=nL3 > 103 deep in the semidilute regime n* > 1. By a stochastic simulation of a liquid of subsequent moving particles, we corroborate the scaling behavior n*−2 of the diffusion coefficients of a needle liquid. We find excellent agreement between the intermediate scattering function in the semidilute regime and a full analytic solution for a freely moving rod with the transport coefficients obtained from stochastic simulation as input parameters. We argue, that the single-needle dynamics in the liquid is asymptotically insensitive to the dynamic rearrangement of the surroundings. Therefore, we map the problem to the movement of a single needle in a frozen disordered array of needles, which enables us to characterize the dynamics in a considerably wider time window.