Regensburg 1998 – scientific programme
Parts | Days | Selection | Search | Downloads | Help
DY: Dynamik und Statistische Physik
DY 24: Allgemeine Statistische Physik I
DY 24.7: Talk
Tuesday, March 24, 1998, 12:15–12:30, H3
Supersymmetry in stochastic processes with higher-order time derivatives — •S.V. Shabanov and H. Kleinert — Institute for Theoretical Physics, FU-Berlin, Arnimallee 14, WE 2, D-14195, Berlin, Germany
A supersymmetric path-integral representation is developed for stochastic processes whose Langevin equation contains any number N of time derivatives, thus generalizing the presently available treatment of first-order Langevin equations by Parisi and Sourlas [1] to systems with inertia (Kramer’s process) and beyond. The supersymmetric action contains N fermion fields with first-order time derivatives whose path integral is evaluated for fermionless asymptotic states [2].
[1] G. Parisi, N. Sourlas, Phys. Rev. Lett. 43, 744 (1979)
[2] H. Kleinert, S.V. Shabanov, Phys. Lett. 235A, 105 (1997)