Freiburg 1999 – scientific programme
Parts | Days | Selection | Search | Downloads | Help
HK: Physik der Hadronen und Kerne
HK 24: Theorie IV
HK 24.1: Group Report
Tuesday, March 23, 1999, 16:30–17:00, A
QCD and Random Matrices — •T. Wettig4, M.E. Berbenni-Bitsch1, T. Guhr2, M. Göckeler3, H. Hehl3, S. Meyer1, P.E.L. Rakow3, A. Schäfer3, B. Seif4, H.A. Weidenmüller2, and T. Wilke2 — 1Fachbereich Physik – Theoretische Physik, Universität Kaiserslautern, D-67663 Kaiserslautern — 2Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg — 3Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg — 4Institut für Theoretische Physik, Technische Universität München, D-85747 Garching
Quantum Chromodynamics (QCD) is a very complex and complicated theory where nonperturbative solutions are hard to find. It has recently been argued that the low-energy sector of QCD, which is important for nonperturbative phenomena such as chiral symmetry breaking, possesses a number of “universal” properties which are independent of the details of the dynamics and only dependent on global symmetries. Such universal features can be described by Random Matrix Theory (RMT), which is a stochastic approach to the eigenvalue spectrum of complex quantum systems. I will describe some applications of RMT in QCD, in particular in lattice QCD, and show how analytical RMT results can be used to gain a better understanding of the low-energy behavior of QCD and of the chiral phase transition at finite temperature and density.