DPG Phi
Verhandlungen
Verhandlungen
DPG

Heidelberg 1999 – scientific programme

Parts | Days | Selection | Search | Downloads | Help

MP: Theoretische und Mathematische Grundlagen der Physik

MP 7: Endliche Quantensysteme und Quantenchaos

MP 7.6: Fachvortrag

Thursday, March 18, 1999, 17:40–18:00, MA1

Bifurkationen klassisch periodischer Bahnen in Systemen mit Symmetrien — •Holger Lars Then1 und Martin Sieber21Abteilung Theoretische Physik, Universität Ulm — 2Max-Planck-Institut für Physik komplexer Systeme, Noethnitzer Str. 38, 01187 Dresden

Periodische Bahnen in klassischen Systemen haben die Eigenschaft, daß sie typischerweise bifurkieren, wenn man die Energie oder einen Parameter des Systems variiert. In der Literatur sind die generischen Bifurkationen von periodischen Bahnen, die in Hamiltonsystemen mit zwei Freiheitsgraden auftreten, bereits klassifiziert. Diese Klassifikation setzt jedoch voraus, daß die Systeme keine Symmetrie haben. In vielen Systemen spielen Symmetrien aber eine wichtige Rolle. Wir betrachten deshalb Bifurkationen von periodischen Bahnen, die generisch sind für Systeme mit diskreten Symmetrien. Die Rotations-, Spiegel- und Zeitumkehrsymmetrie, sowie Kombinationen davon, sind alle diskreten Symmetrien, die in ebenen Hamiltonsystemen auftreten können. Dabei zeigt sich, daß die reduzierte Hamiltonfunktion Relationen erfüllen muß, die durch die Symmetrien der periodischen Bahnen gegeben sind. Diese Relationen zusammen mit weiteren Bedingungen, die durch die Stabilität der Bahnen gegeben sind, führen auf eine Klassifizierung der Bifurkationen von periodischen Bahnen, die für Systeme mit Symmetrien generisch sind.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 1999 > Heidelberg