DPG Phi
Verhandlungen
Verhandlungen
DPG

Münster 1999 – scientific programme

Parts | Days | Selection | Search | Downloads | Help

DY: Dynamik und Statistische Physik

DY 41: POSTER II

DY 41.37: Poster

Thursday, March 25, 1999, 09:30–13:00, Z

Hochtemperaturentwicklung für quasiperiodische Ising-Modelle — •P. Repetowicz, U. Grimm, and M. Schreiber — Institut für Physik, Technische Universität, D-09107 Chemnitz

In den letzten Jahren sind magnetische Eigenschaften von Quasikristallen verstärkt in das Interesse experimenteller Untersuchungen gerückt. Als einfaches Modell einer magnetischen Ordnung in einem quasiperiodischen System betrachten wir Ising-Modelle auf zweidimensionalen quasiperiodischen Parkettierungen. Wir berechnen die führenden Terme der Hochtemperaturentwicklung der Zustandssumme im feldfreien Fall für quasiperiodische Modelle sowie für deren periodische Approximanten. Für die quasiperiodischen Systeme verwenden wir eine angepaßte graphische Entwicklung, wobei die Beiträge der einzelnen Graphen mit den entsprechenden Auftrittshäufigkeiten der Graphen im quasiperiodischen Muster gewichtet werden. Dagegen beruhen unsere Ergebnisse für die periodischen Approximanten auf einem exakten Resultat, das die Zustandssumme eines Ising-Modells auf einem beliebigen zweidimensionalen Graphen durch eine Determinante ausdrückt [1], die man im Fall eines periodischen Graphen im Prinzip explizit berechnen kann. Diese Methode erlaubt auch die Berechnung anderer physikalischer Größen, beispielsweise der Magnetisierung.

[1] N. P. Dolbilin, J. M. Zinowiev, A. C. Mishchenko, M. A. Shtanko und M. I. Shtogrin, The Kac-Ward determinant, erscheint in: Proceedings of the Steklov Institute of Mathematics.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 1999 > Münster