DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2000 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe

MP: Theoretische und Mathematische Grundlagen der Physik

MP 14: Stringtheorie

MP 14.7: Vortrag

Donnerstag, 23. März 2000, 12:45–13:00, W A317

Algebraische Quantisierung vs. Fockraum-Quantisierung – ein Vergleich am Beispiel des Nambu-Goto-Strings — •Dorothea Bahns — Fakultät für Physik, Hermann-Herder-Str. 3, 79104 Freiburg

Ausgangspunkt der algebraischen Quantisierung des Nambu-Goto-Strings in einem Minkowskiraum beliebiger Dimension sind eichinvariante Funktionale („Observable“) in den kanonischen Variablen. Sie bilden eine unendlich-dimensionale gradierte Poisson-Algebra, die durch ein System von Erzeugenden und definierenden Relationen charakterisiert wird. Man quantisiert diese klassische Algebra, indem man die Existenz zugehöriger Quantenerzeuger und zugehöriger Quantenrelationen postuliert. Diese werden durch Strukturähnlichkeits-Forderungen und das Korrespondenzprinzip präzisiert.

Zum Vergleich mit der kanonischen Quantisierung werden die Funktionale durch normalgeordnete Polynome in Erzeugungs- und Vernichtungs-Operatoren ausgedrückt. Bei Wahl dieser Ordnungsvorschrift treten nun Abweichungen von den definierenden Quantenrelationen auf: Anomalien, denen keine klassischen Observablen entsprechen und die nicht Funktionen der Virasoro-Generatoren sind. Zudem sind die Invarianten innerhalb dieses Formalismus nicht „quantenobservabel“: während die klassischen Virasoro-Generatoren mit ihnen Poisson-kommutieren, treten bei Wahl der Normalordnung in den entsprechenden Kommutatoren Anomalien auf – und das unabhängig von der Dimension des Minkowskiraums.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2000 > Dresden