DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2000 – scientific programme

Parts | Days | Selection | Search | Downloads | Help

DY: Dynamik und Statistische Physik

DY 45: Niedrigdimensionales Chaos

DY 45.5: Talk

Thursday, March 30, 2000, 15:45–16:00, H3

Expansionen auf endlichen Längenskalen vs. Lyapunov–Exponenten — •Tobias Letz1,2 und Holger Kantz21Carl von Ossietzky Universität Oldenburg, Fachbereich Physik — 2Max–Planck–Institut für Physik komplexer Systeme, Dresden

In der nichtlinearen Dynamik wird die Existenz mindestens eines positiven Lyapunov–Exponenten mit der Sensitivität gegenüber den Anfangsbedingungen und somit mit Chaos identifiziert. Formal charakterisieren die Lyapunov–Exponenten das dynamische Verhalten von infinitesimalen Abweichungen in den Anfangsbedingungen. In den meisten Systemen zeigt sich aber, daß die Ergebnisse der linearen Stabilitätsanalyse auch auf endlichen Längenskalen gelten und damit die Systeme hinreichend charakterisieren. Diese Gültigkeit der linearen Stabilitätsanalyse auf endlichen Längenskalen nutzen Algorithmen aus der nichtlinearen Zeitreihenanalyse zur Bestimmung des größten Lyapunov–Exponenten aus, indem das zeitliche Verhalten von benachbarten Trajektorien beobachtet wird. Es gibt aber auch Systeme, deren dynamisches Verhalten nicht ausreichend

durch die lineare Stabilitätsanalyse charakterisiert wird. Sie zeigen,

trotz negativem größtem Lyapunov–Exponenten, zeitliche (und räumliche) Unordnung. Wir führen, ausgehend von einer Methode zur Bestimmung des größten Lyapunov–Exponenten, eine skalenabhängige Stabiltätszahl ein und diskutieren ihre Aussagekraft an drei Beispielsystemen.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2000 > Regensburg