Dresden 2003 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe
DY: Dynamik und Statistische Physik
DY 10: Statistical physics far from thermal equilibrium
DY 10.4: Vortrag
Montag, 24. März 2003, 10:30–10:45, G\"OR/226
Phase transition in the zero range process — •Stefan Großkinsky1, Gunter Schütz2, and Herbert Spohn1 — 1Zentrum Mathematik, TU München, 85747 Garching bei München — 2Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich
A general criterion for phase separation in one dimensional nonequilibrium
systems was recently given in [1]. This is based on results for the zero
range process, which can be viewed as a generic model for domain dynamics
in one dimension. For large volume, if the particle density exceeds a
critical value, the system exhibits phase separation in a condensed and
non-condensed phase in the steady state. In [2] Evans introduced a generic
example of such a zero range process, where the presence of this
condensation phenomenon depends on a system parameter. We study the
stationary behaviour of this system in detail and analyze the coarsening
phenomenon during dynamical evolution, extending the results in [2]. We
also prove two theorems on the equivalence of ensembles and on the form of
typical configurations in the condensated steady state for general zero
range processes.
Y. Kafri, E. Levine, D. Mukamel, G.M. Schütz, and J. Török,
Phys. Rev. Lett. 89(3), 035702 (2002)
M.R. Evans, Braz. J. Phys. 30, 42 (2000)