Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe
SYLS: Life Sciences on the Nanometer Scale - Physics Meets Biology
SYLS 3: Symposium "Life Sciences on the Nanometer Scale - Physics Meets Biology"
SYLS 3.35: Poster
Mittwoch, 10. März 2004, 16:00–18:30, B
Translocation of structured RNA molecules through nanopores — •Ulrich Gerland1, Ralf Bundschuh2, and Terence Hwa3 — 1Sektion Physik, Universität München — 2Department of Physics, The Ohio State University — 3Department of Physics, University of California at San Diego
We investigate theoretically the translocation of structured RNA/DNA molecules through narrow pores which allow single but not double strands to pass. The unzipping of basepaired regions within the molecules presents significant kinetic barriers for the translocation process. We show that this circumstance may be exploited to determine the full basepairing pattern of polynucleotides, including RNA pseudoknots. The crucial requirement is that the translocation dynamics (i.e., the length of the translocated molecular segment) needs to be recorded as a function of time with a spatial resolution of a few nucleotides. This could be achieved, for instance, by applying a mechanical driving force for translocation and recording force-extension curves (FEC’s) with a device such as an atomic force microscope or optical tweezers. Our analysis suggests that with this added spatial resolution, nanopores could be transformed into a powerful experimental tool to study the folding of nucleic acids.