DPG Phi
Verhandlungen
Verhandlungen
DPG

Berlin 2005 – scientific programme

Parts | Days | Selection | Search | Downloads | Help

MO: Molekülphysik

MO 15: Biomolecules II

MO 15.1: Talk

Friday, March 4, 2005, 17:00–17:15, HU 2097

Non-Adiabatic Effects on Peptide Vibrational Dynamics Induced by Conformational Changes — •Burkhard Schmidt, Jens Antony, and Christof Schütte — Freie Universität, Institut für Mathematik II, Arnimallee 2-6, 14195 Berlin

Quantum dynamical simulations of vibrational spectroscopy have been carried out for glycine dipeptide (CH3-CO-NH-CH2-CO-NH-CH3). Conformational structure and dynamics are modeled in terms of the two Ramachandran dihedral angles of the molecular backbone. Potential energy surfaces and harmonic frequencies are obtained from electronic structure calculations at the DFT (B3LYP/6-31+G(d)) level. The ordering of the energetically most stable isomers (C7 and C5) is reversed upon inclusion of the quantum mechanical zero point vibrational energy. Vibrational spectra of various isomers show distinct differences, mainly in the region of the amide modes, thereby relating conformational structures and vibrational spectra. Conformational dynamics is modeled by propagation of quantum mechanical wave packets. Assuming a directed energy transfer to the torsional degrees of freedom, transitions between the C7 and C5 minimum energy structures occur on a sub-picosecond timescale (700 ... 800 fs). Vibrationally non-adiabatic effects are investigated for the case of the coupled, fundamentally excited amide I states. Using a two state-two mode model, the resulting wave packet dynamics is found to be strongly non-adiabatic due to the presence of a seam of the two potential energy surfaces. Initially prepared adiabatic vibrational states decay upon conformational change on a timescale of 200 ... 500 fs with population transfer of more than 50

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2005 > Berlin