DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2006 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe

DY: Dynamik und Statistische Physik

DY 43: Signals and neuronal Networks

DY 43.1: Vortrag

Donnerstag, 30. März 2006, 11:30–11:45, SCH 251

Precise Timing in Strongly Heterogeneous Neural Networks with Delay — •Raoul-Martin Memmesheimer1,2 and Marc Timme1,2,31Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) Göttingen — 2Bernstein Center for Computational Neuroscience BCCN Göttingen — 3Center for Applied Mathematics, Cornell University, Ithaca, USA

Precise timing of spikes is discussed to be a key element of neural computation [1], but it is still an open question how patterns of precisely timed spikes emerge in the dynamics of neural networks [2]. Here we demonstrate that and how deterministic neural networks which simultaneously exhibit delayed interactions [3], complex topology [4] and strong heterogeneities can yet display periodic patterns of spikes that are precisely timed. We develop an analytical method to design networks that display a given non-degenerate pattern with realistic temporal extent and complicated temporal structure. We point out that the same pattern can exist in very different networks; its stability depends on the particular coupling architecture. Using a nonlinear stability analysis, we show that networks with purely inhibitory (or purely excitatory) coupling can either store only stable or only unstable patterns.
M. Abeles, Science 304:523 (2004).
I.J. Matus Bloch, C. Romero Z., Phys. Rev. E 66:036127 (2002); D.Z. Jin, Phys. Rev. Lett. 89:208102 (2002); M. Denker et al., Phys. Rev. Lett. 92:074103 (2004).
U. Ernst, K. Pawelzik, T. Geisel, Phys. Rev. Lett. 74:1570 (1995).
M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 89:258701 (2002).

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2006 > Dresden