Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe
DY: Dynamik und Statistische Physik
DY 46: Poster
DY 46.119: Poster
Donnerstag, 30. März 2006, 16:00–18:00, P1
Series expansions for percolation and bond-diluted Ising models on ZD — •Meik Hellmund1 and Wolfhard Janke2 — 1Mathematisches Institut, Universität Leipzig — 2Institut für Theoretische Physik, Universität Leipzig
We derive high-temperature series expansions for the free energy and the susceptibility of random-bond q-state Potts models on hypercubic lattices using a star-graph expansion technique.
For the case of the Ising (q=2) model, disordered by quenched bond dilution, a detailed analysis of the influence of the disorder on the second-order phase transition (change in critical temperature and exponent γ) is presented for 3, 4 and 5 dimensions.
In the pure (no disorder) case we obtain series for the free energy and susceptibility with explicit q- and D-dependence up to order 17 (arbitrary D) and 19 (D≤5), resp. This allows us to analyze bond percolation (q→1) and tree percolation (q→0) and obtain critical exponents in various dimensions.