DPG Phi
Verhandlungen
Verhandlungen
DPG

Frankfurt 2006 – scientific programme

Parts | Days | Selection | Search | Downloads | Help

Q: Quantenoptik und Photonik

Q 14: Quantengase III

Q 14.3: Talk

Monday, March 13, 2006, 17:30–17:45, HVI

Magnetic coupling of a BEC to a nano-mechanical resonator — •David Hunger1, Philipp Treutlein1, Stefan Camerer2, Daniel König2, Jörg Kotthaus2, Theodor W. Hänsch1, and Jakob Reichel31Max-Planck-Institut für Quantenoptik und Department für Physik der Ludwig-Maximilians-Universität München, Germany — 2Department für Physik der Ludwig-Maximilians-Universität München, Germany — 3Laboratoire Kastler Brossel de l’ENS, Paris, France

Atom chips are a well suited toolbox for a new, promising research field: The combination of quantum optics and condensed-matter systems. A first milestone in this direction is to show that a designed, controllable interaction between atoms and nano-structured solid state systems can be established and measured.
We are currently setting up an experiment to couple the thermally induced oscillation of a nano-mechanical beam resonator to a nearby Bose-Einstein condensate via a magnetic interaction. A small island of ferromagnetic material at the center of the beam causes a magnetic dipole field with an oscillating contribution. At the position of the atoms the field oscillation can cause observable trap loss if it is resonant with atomic spin-flip transitions to untrapped magnetic sublevels. Sweeping the static field of the trap and with it the spin-flip resonance reveals the frequency spectrum of the beam.
The experiment provides a new method to measure the room temperature spectrum of nano-resonators, thereby demonstrating the controlled interaction with trapped atoms. Beyond this it allows to study the conditions for coherent coupling of such systems.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2006 > Frankfurt