Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe
MP: Fachverband Theoretische und Mathematische Grundlagen der Physik
MP 4: Quantenmechanik, Symmetrien, Integrable Systeme und Quanteninformationstheorie
MP 4.2: Vortrag
Dienstag, 6. März 2007, 17:30–18:00, KIP SR 1.403
Quasi doubly-periodic solutions to a generalized Lame equation — •Michael Pawellek — Institut für Theoretische Physik III, Universität Erlangen-Nürnberg, Staudtstr.7, D-91058 Erlangen
We consider a generalization of the Lame equation, which can be written as a 1-d Schroedinger equation with quasi doubly-periodic potential depending on five parameters. We introduce a generalization of Jacobi’s elliptic functions and show that polynomial solutions in terms of these functions only for a finite set of values for these five parameters exist. For this purpose we also establish a relation to the generalized Ince equation.