Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 1: Critical phenomena and phase transitions
DY 1.5: Vortrag
Montag, 25. Februar 2008, 11:15–11:30, MA 004
Multifractality of self-avoiding random walks on percolation cluster — •Viktoriya Blavatska1,2 and Wolfhard Janke2 — 1Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, Ukraine — 2Institut für Theoretische Physik, Universität Leipzig, Leipzig, Germany
The model of self-avoiding walks (SAWs) on disordered lattice perfectly describes the universal properties of long flexible polymer chains in porous media. In our study, disordered lattice is exactly at the percolation threshold. Applying the pruned-enriched Rosenbluth chain-growth method (PERM), we perform numerical simulations of SAWs on the backbone of the incipient percolation cluster in two, three and four dimensions. Considering higher order correlations of SAWs, we study the multifractal properties of the model. Our results bring about the estimates of critical exponents, governing the scaling laws of configurational properties of SAWs.