Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 2: Statistical physics I (general)
DY 2.6: Vortrag
Montag, 25. Februar 2008, 11:45–12:00, MA 001
Temperature-dependent self-avoiding walks on Sierpinski carpets — •Miriam Fritsche1, H. Eduardo Roman2, and Markus Porto1 — 1Institut für Festköperphysik, Technische Universität Darmstadt, Hochschulstr. 8, 64289 Darmstadt, Germany — 2Dipartimento di Fisica, Universitá di Milano - Bicocca, Piazza della Scienza 3, 20126 Milano, Italia
Self-avoiding walks (SAWs) on fractal structures constitute a valuable model of polymers absorbed on a disordered surface and give intriguing insights in their statistical properties. We study the temperature-dependent structural behaviour of self-avoiding walks on two-dimensional Sierpienski carpets [1]. Thereby, the Sierpinski carpet defines two types of sites with energy 0 and є>0, respectively, yielding a deterministic fractal energy landscape with ‘infinite ramification’. In the limiting cases of temperature T → 0 and T → ∞, the known behaviours of SAWs on Sierpinsky carpets and on regular square lattices, respectively, are recovered. For finite temperatures, the structural behaviour is found to be intermediate between the two limiting cases. The characteristic exponents, however, display a non-trivial dependence on temperature.
[1] M. Fritsche, H.E. Roman, and M. Porto, Phys. Rev. E (in print)