Berlin 2008 – scientific programme
Parts | Days | Selection | Search | Downloads | Help
SYSA: Symposium Tayloring Organic Interfaces: Molecular Structures and Applications
SYSA 5: Poster Session SYSA
SYSA 5.46: Poster
Tuesday, February 26, 2008, 14:30–20:00, Poster A
Impedance analysis on organic ultrathin layers — •Sidhant Bom and Veit Wagner — Jacobs University Bremen, School of Engineering and Science, Campus Ring 8, 28759 Bremen, Germany
Impedance spectroscopy is a standard technique for thin film analysis to obtain important information as thicknesses, diffusion properties of mobile ions and leakage currents. The measured electrical impedance of a sample is modeled by a physical equivalent circuit of resistors and capacitors. In the present work this information is obtained as a function of frequency also for ultrathin organic layers in the monolayer regime.
A series of semiconducting and insulating polymers (regioregular poly-3-hexylthiophene (rr-P3HT), polymethylmethacrylate (PMMA)) and self assembled monolayers (octadecyltrichlorosilane (OTS), hexamethyldisilazane (HMDS), thiolated phospholipids) were deposited either on highly n-doped silicon wafers or on gold surfaces. E.g. ultrathin layers were obtained by dip coating a silicon wafer in rr-P3HT solution in chloroform. The thickness of 2 nm determined for this system by impedance measurement agrees well with the atomic force microscopy analysis and corresponds to a single layer of polymer chains. The leakage current is seen as an ohmic contribution at low frequencies and allows a systematic optimization of process parameters.
In summary, impedance spectroscopy allows very fast and convenient analysis of thin organic layers even down to the monolayer regime.