Dresden 2009 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 13: Statistical physics III (general)
DY 13.4: Vortrag
Dienstag, 24. März 2009, 15:30–15:45, ZEU 255
Phase space description of spin dynamics — William Coffey1, Yuri Kalmykov2, •Bernard Mulligan3, and Serguey Titov4 — 1Trinity College, Dublin, Ireland — 2Université de Perpignan, France — 3Max Planck Institute for the Physics of Complex Systems, Dresden — 4Russian Academy of Sciences, Russia
The spin system with Hamiltonian ĤS=−ξŜZ−σŜZ2 (ξ and σ are external and internal field parameters) is treated as an example of the phase space description of spin dynamics using a master equation for the quasiprobability distribution function of spin orientations in the representation (phase) space of the polar angles (analogous to the Wigner phase space distribution for translational motion). The master equation yields (via the Wigner-Stratonovich transformation of the density matrix) the solution as a Fourier series in the spherical harmonics with Fourier coefficients given by the statistical moments in a manner analogous to the classical distribution. The relaxation time of the longitudinal component of the spin can be estimated using a quantum generalization of the classical integral relaxation time via the stationary distribution and diffusion coefficient of the master equation.