Dresden 2009 – scientific programme
Parts | Days | Selection | Search | Downloads | Help
O: Fachverband Oberflächenphysik
O 27: Poster Session I (Methods: Scanning probe techniques; Methods: Atomic and electronic structure; Methods: Molecular simulations and statistical mechanics; Oxides and Insulators: Clean surfaces; Oxides and Insulators: Adsorption; Oxides and Insulators: Epitaxy and growth; Semiconductor substrates: Clean surfaces; Semiconductor substrates: Epitaxy and growth; Semiconductor substrates: Adsorption; Nano- optics of metallic and semiconducting nanostructures; Electronic structure; Methods: Electronic structure theory; Methods: other (experimental); Methods: other (theory); Solutions on surfaces; Epitaxial Graphene; Surface oder interface magnetism; Phase transitions; Time-resolved spectroscopies)
O 27.57: Poster
Tuesday, March 24, 2009, 18:30–21:00, P2
Angle-resolved inverse photoemission of the H-etched 6H-SiC(0001) surface — •Nabi Aghdassi, Ralf Ostendorf, and Helmut Zacharias — Physikalisches Institut, Westfälische Wilhelms-Universität Münster
The etching of 6H-SiC(0001) substrates in molecular hydrogen at elevated temperatures leads to an ordered silicate adlayer as it is confirmed by LEED and AES. LEED patterns clearly feature a (√3× √3)R30∘ periodicity while AES spectra are evidence for the presence of Si-O bonds. The generated surfaces appear to be fully passivated and therefore stable in ambient air. After cleaning the samples by heating in UHV up to temperatures around 750∘C angle-resolved inverse photoemission is performed on the SiO2/SiC interface. The IPE spectra reveal five features above the Fermi level around 0.5 eV, 1.2 eV, 2.3 eV, 3.5 eV and 5.5 eV, respectively, which show only a weak dispersion along the Γ - M and Γ - K directions of the (1×1) surface Brillouin zone.