Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe
TT: Fachverband Tiefe Temperaturen
TT 28: Superconductivity: Heterostructures, Andreev Scattering, Proximity Effect, Coexistence
TT 28.7: Vortrag
Mittwoch, 25. März 2009, 17:15–17:30, HSZ 105
Superconducting spin valves based on epitaxial [Fe/V]-superlattices — •Gregor Nowak1, Moreno Marcellini2, Hartmut Zabel1, Björgvin Hjörvarsson2, and Kurt Westerholt1 — 1Experimentalphysik/Festkörperphysik, Ruhr Universität Bochum — 2Department of Physics, University of Uppsala, Sweden
In superconducting spin valves of the type S/F1/N/F2 or F1/S/F2 with a superconducting layer S, two ferromagnetic layers F1 and F2 and a normal metallic layer N, the superconducting transition temperature TS depends on the relative magnetization direction of the ferromagnetic layers F1 and F2. The difference of the transition temperature ΔTS=TSAP-TSP with the magnetization direction of F1 and F2 either antiparallel or parallel is called the superconducting spin valve effect [1]. We observed a superconducting spin valve shift of up to ΔTS=200 mK when aligning the sublattice magnetization in an external magnetic field in S/F1/N/F2 type of spin valves. In the F1/S/F2-type spin valves the ferromagnetic layer F1 was either a [Fe/V] or a [FexV1−x/V] superlattice, the F2 layer was a Fe-, a Co- or a FexV1−x film. Using weakly ferromagnetic FexV1−x alloy layers as F1 and F2 we find a spin valve effect of up to ΔTS=24 mK. We also present experimental evidence for a drastic reduction or even a sign reversal of the superconducting spin valve effect in the presence of perpendicular magnetic stray fields from ferromagnetic domain walls.
[1] J.Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader, Phys. Rev. Lett. 89, 267001 (2002)