Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe

MP: Fachverband Theoretische und Mathematische Grundlagen der Physik

MP 4: Quantentheorie und Quantisierung 1

MP 4.2: Vortrag

Dienstag, 10. März 2009, 16:20–16:40, M010

Der Zusammenhang zwischen mathematischer und physikalischer Verschränktheit — •Thomas Krüger — Institut für Chemie, Karl-Franzens-Universität Graz, Heinrichstraße 28, 8010 Graz, Österreich

Within the framework of a statistical interpretation of quantum mechanics entanglement (in a mathematical sense) manifests itself in the non-separability of the statistical operator ρ representing the ensemble in question. In experiments, on the other hand, entanglement can be detected, in the form of non-locality, by the violation of Bell’s inequality Δ ≤ 2. How do these different viewpoints match? We employ a corrected von Neumann entropy to measure the (mathematical) degree of entanglement and show that, at least in the case of 2 × 2 dimensions, this function is directly related to Bell’s correlation function Δ. This relation can be well approximated by an ellipse equation which, for the first time, allows for a direct comparison of the two faces of entanglement.

100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2009 > München