Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 10: Nonlinear Dynamics I
DY 10.6: Vortrag
Dienstag, 23. März 2010, 15:15–15:30, H46
Scaling properties of bred- and Lyapunov vectors — •Sarah Hallerberg1, Juan M. Lopez2, Diego Pazo2, and Miguel A. Rodriguez2 — 1Institut für Physik, TU Chemnitz — 2Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander
It has been demonstrated that the spatio-temporal dynamics of characteristic Lyapunov vectors in spatially extended chaotic systems can be related to properties of scale invariant growing surfaces [1]. We study now, whether similar scaling properties, can also be observed for bred vectors. Moreover we propose a new method to estimate Lyapunov exponents corresponding to the most expanding directions using bred vectors [2]. More precisely, the scaling properties of the perturbations allow us to associate a bred vector of a given amplitude to a specific Lyapunov vector within the first ten percent of the Lyapunov spectrum. In this contribution we extend the results obtained in previous studies for the Lorenz'96 model [3] to applications in a minimalistic climate model [4].
References: [1] D. Pazo et al. (2008) [2] E. Kalnay et al. (2002) [3] E. N. Lorenz (1998) [4] V. Lucarini et al. (2007)