Bereiche | Tage | Auswahl | Suche | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 19: Quantum Chaos
DY 19.2: Vortrag
Mittwoch, 24. März 2010, 14:30–14:45, H38
Geometric Phases of Exceptional Points in Time-Reversal Noninvariant Systems — Stefan Bittner1, Barbara Dietz-Pilatus1, Pedro Oria Iriarte1, Maksim Miski-Oglu1, Achim Richter1,3, Hans A. Weidenmüller2, Hanns L. Harney2, and •Florian Schäfer1,4 — 1Institut für Kernphysik, Schlossgartenstraße 9, 64289 Darmstadt — 2Max-Planck-Institut für Kernphysik, 69029 Heidelberg — 3ECT*, Villa Tambosi, I-38100 Villazzano (Trento), Italy — 4LENS, University of Florence, I-50019 Sesto-Fiorentino (Firenze), Italy
The eigenvectors of a two level system described by a non-Hermitian Hamiltonian coalesce at a so-called Exceptional Point, a phenomenon already investigated in numerous systems. In general, for a two-dimensional Hamiltonian the two components of each eigenfunction define an enclosing angle φ. Past experiments established for time-reversal invariant systems at an Exceptional Point a universal phase φ=π. Here, we present results on experiments in microwave billiards with partial time-reversal invariance violation, induced by the presence of a magnetized ferrite. Two control parameters allow for a variation of the Hamiltonian. The experiments explore the parameter space in vicinity the of and at an Exceptional Point. The data allow for a reconstruction of the complete, complex-valued Hamiltonian. Using this information we demonstrate a sensitive dependence of φ at an Exceptional Point on the strength of time-reversal invariance violation.
This work is supported by DFG through SFB 634.