Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 23: Poster 2: Intersectional Session

Q 23.6: Poster

Dienstag, 15. März 2011, 18:00–21:00, P1

Cyclic Mutually Unbiased Bases and the Fibonacci Sequence — •Ulrich Seyfarth1, Kedar Ranade2, and Gernot Alber11Institut für Angewandte Physik, Technische Universität Darmstadt, 64289 Darmstadt, Germany — 2Institut für Quantenphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany

The construction of mutually unbiased bases (MUBs) is of high interest in quantum information science. MUBs are called cyclic if they can be constructed by repeated applications of a single unitary operator. To get a deeper notion of how to contruct complete sets of cyclic MUBs in arbitrary dimensions it is important to explore their mathematical structure. Based on recent work [1] a connection between cyclic MUBs and the Fibonacci sequence is established. This connection enables one to find complete sets of cyclic MUBs in arbitrary even prime-power dimensions. Thereby, known properties of the Fibonacci sequence yield a simplified construction method conveying a better notion of complete sets of cyclic MUBs.

O. Kern, K. S. Ranade and U. Seyfarth, J. Phys. A, 43, 275305 (2010)

100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2011 > Dresden