Dresden 2011 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
ST: Fachverband Strahlen- und Medizinphysik
ST 1: Radiation Therapy I Fast Ions: Production, Physical Dosimetry, Biological Effets, Medical Effects
ST 1.6: Vortrag
Montag, 14. März 2011, 15:15–15:30, POT 112
Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution — •Sabine Reinhardt1, Walter Assmann1, Peter Kneschaurek2, and Jan Wilkens2 — 1Ludwig-Maximilians Universität München — 2MRI, Technische Universität München
One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 107 particles /cm2/ns) are generated, which makes online detection an ambitious task.
So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented.
For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.