Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DF: Fachverband Dielektrische Festkörper
DF 9: Poster I - Biomagnetism, FePt Nanoparticles, Magnetic Particles/Clusters, Magnetic Materials, Magnetic Semiconductors, Half-metals/Oxides, Multiferroics, Topological Insulators, Spin structures/Phase transitions, Electron theory/Computational micromagnetics, Magnetic coupling phenomena/Exchange bias, Spin-dependent transport, Spin injection/spin currents, Magnetization/Demagnetization dynamics, Magnetic measurement techniques
DF 9.61: Poster
Dienstag, 27. März 2012, 12:15–15:15, Poster A
Anomalous Hall effect as a Fermi surface property — •Alexander Mook1, Falko Pientka1,2, Ingrid Mertig1,3, and Peter Zahn1 — 1Institut für Physik, Martin-Luther-Universität, Von-Seckendorff-Platz 1, D-06120 Halle — 2Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle — 3Fachbereich Physik, Freie Universität, D-14195 Berlin
Already Haldane has shown in a seminal paper that the intrinsic anomalous Hall conductivity can be expressed as an integral over the Fermi surface as expected for a Fermi liquid property [1].
The anomalous Hall conductivity can be expressed either by a volume integral of the occupied states in the Brillouin zone or a Fermi surface integral with a thorough treatment of the Brillouin zone boundaries. We implemented both methods and applied them to a tight-binding Hamiltonian including exchange splitting and spin-orbit coupling.
Our investigations show that both results agree well. Details of the integration procedure have to be optimized to obtain a satisfying agreement for cases where avoided band crossings occur close to the Fermi level. The surface integration replaces the time consuming volume integration over the Fermi sea [2]. The method is applicable to advanced ab initio electronic structure schemes which provide besides the band energies also the Berry curvature.
[1] F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004). [2] M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B. L. Göyrffy, Phys. Rev. B 84, 075113 (2011).