DPG Phi
Verhandlungen
Verhandlungen
DPG

Berlin 2012 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

DF: Fachverband Dielektrische Festkörper

DF 9: Poster I - Biomagnetism, FePt Nanoparticles, Magnetic Particles/Clusters, Magnetic Materials, Magnetic Semiconductors, Half-metals/Oxides, Multiferroics, Topological Insulators, Spin structures/Phase transitions, Electron theory/Computational micromagnetics, Magnetic coupling phenomena/Exchange bias, Spin-dependent transport, Spin injection/spin currents, Magnetization/Demagnetization dynamics, Magnetic measurement techniques

DF 9.84: Poster

Tuesday, March 27, 2012, 12:15–15:15, Poster A

Spin-wave tunneling through a mechanical gap in microstructured Ni81Fe19-stripes — •Thomas Langner1, Björn Obry1, Philipp Pirro1, Thomas Brächer1,2, Katrin Vogt1,2, Britta Leven1, and Burkard Hillebrands11TU Kaiserslautern, Fachbereich Physik and Forschungszentrum OPTIMAS, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern — 2Graduate School Materials Science in Mainz, Gottlieb-Daimler-Straße 47, 67663 Kaiserslautern

The manipulation of the propagation properties of spin waves is of high importance to develop systems that can transport information using the spin wave as information carrier. One way to manipulate these properties is the use of magnetic tunnel barriers. We investigated the tunneling of spin waves through a mechanical gap in microstructured stripes made of Ni81Fe19. The focus of this work is on the investigation of the transmission of spin waves with varying wavelengths through a tunnel barrier with respect to the position of the gap. It is shown that quantization effects play an important role in the transmission behavior of tunneling spin waves in microscaled systems. The region between the excitation antenna and the gap acts as a spin-wave resonator. It has a large influence not only on the excitation properties but also on the transmission characteristics. We present Brillouin light scattering microscopy measurements revealing a strong influence of pinning effects of standing spin-wave modes inside this resonator on the tunneling efficiency.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2012 > Berlin