Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
HK: Fachverband Physik der Hadronen und Kerne
HK 10: Struktur und Dynamik von Kernen
HK 10.1: Gruppenbericht
Montag, 19. März 2012, 16:30–17:00, RW 3
Chiral Fermi liquid description of nuclear matter — •Jeremy Holt, Norbert Kaiser, and Wolfram Weise — Technische Universität München
We employ Landau’s theory of normal Fermi liquids to study the bulk properties of nuclear matter with high-precision two- and three-nucleon interactions derived within the framework of chiral effective field theory. The L=0,1 Landau parameters, characterizing the isotropic and p-wave interaction between two quasiparticles on the Fermi surface, are computed to second order in many-body perturbation theory (MBPT) with chiral and low-momentum two-nucleon forces. Already at this order a number of observables are well described in the theory, including the nuclear isospin asymmetry energy, the quasiparticle effective mass and the spin-isospin response. An adequate description of the nuclear compression modulus (encoded in the Landau parameter F0) requires the inclusion of the leading-order (N2LO) chiral three-nucleon force, which we include to first order in MBPT. The remaining L=0 Landau parameters receive only small corrections from the chiral three-nucleon force, and the L=1 parameters are all reduced, resulting in an effective interaction of apparent short range. We then employ renormalization group techniques to study the scale dependence of the quasiparticle interaction, which allows for an estimation of theoretical uncertainties.
Work supported in part by BMBF, GSI and by the DFG cluster of excellence: Origin and Structure of the Universe.