Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
Q: Fachverband Quantenoptik und Photonik
Q 25: Quanteninformation: Konzepte und Methoden 3
Q 25.5: Vortrag
Dienstag, 13. März 2012, 11:30–11:45, V7.01
Quantifying tripartite entanglement for three-qubit generalized Werner states — •Jens Siewert1,2 and Christopher Eltschka3 — 1Departamento de Química Física, Universidad del País Vasco , 48080 Bilbao, Spain — 2Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain — 3Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
The adequate quantification of entanglement in multipartite mixed states is still a theoretically unsolved problem, even in the case of three qubits. In order to investigate the robustness of entanglement against noise one often employs the so-called generalized Werner states, i.e., pure maximally entangled states mixed with the completely unpolarized state. Even for those states there are no quantitative results available.
In this contribution, we present the solution of the problem for three-qubit generalized Werner states (as well as for the whole family of full-rank mixed states which obey the Greenberger-Horne-Zeilinger symmetry) by providing an exact quantitative account of the tripartite entanglement contained in those states.