DPG Phi
Verhandlungen
Verhandlungen
DPG

Hannover 2013 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

Q: Fachverband Quantenoptik und Photonik

Q 61: Quantum information: Atoms and ions V

Q 61.3: Talk

Friday, March 22, 2013, 11:30–11:45, E 214

Quantum teleportation of a polarization state of a weak laser pulse to a single atom — •Daniel Burchardt1, Norbert Ortegel1, Kai Redeker1, Julian Hofmann1, Michael Krug1, Markus Weber1, Wenjamin Rosenfeld1,2, and Harald Weinfurter1,21Ludwig-Maximilians-Universität, München — 2Max-Planck-Institut für Quantenoptik, Garching

Quantum teleportation enables to transfer the quantum state of a particle to a remote location without sending the particle itself. Here, we report on teleportation of the polarization state of an attenuated laser pulse to a single 87Rb atom stored in an optical dipole trap over a distance of 20   m. In a first step the atomic Zeeman state is entangled with the polarization state of a single photon1. The emitted photon interferes with the polarized photon of the laser pulse on a beam splitter enabling a Bell state measurement. This projects the atom to one of four well-defined states depending on the outcome of the Bell state measurement. To achieve a sufficient fidelity one has to ensure that the interfering photons are indistinguishable in all degrees of freedom except polarization. Additionally the Poissonian distribution of the laser source gives rise to a non-vanishing probability for multi-photon pulses. We determine the fidelity of the teleportation process by evaluating the density matrix of the new atomic state. This demonstrates e.g. the possibility of writing quantum states into a remote quantum memory.

[1] J. Volz et al., Phys. Rev. Lett., 2006.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2013 > Hannover