Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 26: Quantum Chaos I
DY 26.8: Vortrag
Donnerstag, 14. März 2013, 11:45–12:00, H47
Trapping of chaotic orbits in 4D maps — •Steffen Lange1,2, Martin Richter1, Arnd Bäcker1,2, and Roland Ketzmerick1,2 — 1Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany — 2Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
Generic Hamiltonian systems with more than two degrees of freedom lead to chaotic zones in phase space which are all interconnected by the Arnol’d web. We study 4D maps with a regular region embedded in a large chaotic sea, i.e. far away from the near-integrable regime. Chaotic orbits show a power-law decay of survival times. We find that the underlying mechanism is clearly different from trapping in 2D maps. Moreover, it is not related to the Arnol’d web. Instead, an anisotropic diffusion near the surface of the regular region is observed.