DY 31: Anomalous Diffusion
Donnerstag, 14. März 2013, 15:00–16:45, H48
|
15:00 |
DY 31.1 |
A self-consistent theory for the localization transition in the Lorentz model — •Simon Lang, Teresa Behl, Felix Höfling, and Thomas Franosch
|
|
|
|
15:15 |
DY 31.2 |
Subdiffusive exciton motion in systems with heavy-tailed disorder — •Sebastiaan M. Vlaming, Alexander Eisfeld, Victor A. Malyshev, and Jasper Knoester
|
|
|
|
15:30 |
DY 31.3 |
Spatial-temporal velocity autocorrelation function for random walks. — •Vasily Zaburdaev, Sergey Denisov, and Peter Hänggi
|
|
|
|
15:45 |
DY 31.4 |
Distinguishing Between Different Subdiffusive Scenarios. — •Felix Thiel and Igor Sokolov
|
|
|
|
16:00 |
DY 31.5 |
Anomalous diffusion in two- and three-dimensional polymer melts — •Hendrik Meyer, Jean Farago, and A.N. Semenov
|
|
|
|
16:15 |
DY 31.6 |
Geometric properties of continuous time random walks — •Mirko Lukovic, Theo Geisel, and Stephan Eule
|
|
|
|
16:30 |
DY 31.7 |
Oriented Particles in Porous Media — •Prehl Janett, Haber René, Hoffmann Karl Heinz, and Herrmann Heiko
|
|
|