DPG Phi
Verhandlungen
Verhandlungen
DPG

Berlin 2014 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

A: Fachverband Atomphysik

A 22: Photon Sources for Quantum Networks SYQR 4 (with Q)

A 22.2: Talk

Tuesday, March 18, 2014, 14:15–14:30, Kinosaal

Electro-mechanical engineering of Non-classical Photon Emissions from Single Quantum Dots — •Bianca Höfer1, Eugenio Zallo1, Jiaxiang Zhang1, Rinaldo Trotta2, Armando Rastelli2, Fei Ding1, and Oliver G. Schmidt11Institute for Integrative Nanosciences, IFW-Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany — 2Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria

Indistinguishable photons and entangled photon pairs are the key elements for quantum information applications, for example, building a quantum repeater. Self-assembled semiconductor quantum dots (QDs) are promising candidates for the creation of such non-classical photon emissions, and offer the possibility to be integrated into solid state devices. However, due to the random nature of the self-assembled growth process, post-growth treatments are required to engineer the exciton state in the QDs (e.g. energies, exciton lifetimes, and fine structure splittings). In this work, we study the electro-mechanical engineering of the exciton lifetime, emission energy in the QDs, with the aim to produce single photons with higher indistinguishability. Also we present a recent experimental study on the statistical properties of fine structure splittings in the QD ensemble, in order to gain a deeper understanding of how to generate entangled photon pairs using semiconductor QDs.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2014 > Berlin