Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
MP: Fachverband Theoretische und Mathematische Grundlagen der Physik
MP 13: Poster (permanent Mo-Do)
MP 13.5: Poster
Dienstag, 18. März 2014, 08:00–18:00, SPA Foyer
Numerical solution to the Gross-Pitaevskii equation for dipolar Bose-Einstein condensates — Kishor Kumar R1, Young-S. Luis E.2, Dušan Vudragović3, Antun Balaž3, •Paulsamy Muruganandam1, and Sadhan Kumar Adhikari2 — 1School of Physics, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli – 620024, Tamil Nadu, India — 2Instituto de Física Teórica, UNESP – São Paulo State University, 01.140-70 São Paulo, São Paulo, Brazil — 3Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
Many of the static and dynamic properties of dipolar Bose-Einstein condensates are can be studied from the Gross-Pitaevskii equation, a nonlinear nonlocal (integro-differential) partial differential equation. Here we develop a combined split-step Crank-Nicolson and fast Fourier transform based numerical scheme for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii equation describing the properties of dipolar Bose-Einstein condensates at ultra low temperatures. We present results from the numerical scheme for energy, chemical potential, root-mean-square sizes and density of the dipolar BECs and compare them with results of other authors.