Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 21: Pattern Formation
DY 21.3: Vortrag
Mittwoch, 2. April 2014, 15:30–15:45, HÜL 186
The two-dimensional Kuramoto-Sivashinky equation generalized by a linear and a quadratic damping term — •Marc Osthues, Christian Diddens, and Stefan J. Linz — Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster
Inspired by the effect of particle redeposition in the context of self-organized pattern formation on ion-beam eroded semiconductor targets [1,2], we investigate a generalization of the two-dimensional Kuramoto-Sivashinky equation by additionally considering a linear and a quadratic damping/stabilization term. The analysis of the resulting equation by numerical simulations, amplitude equations and Galerkin approximations reveals a variety of solution types depending on the entering parameters. The arising morphologies range from spatio-temporal chaotic dynamics and blinking states to hexagonally arranged dot and hole patterns as well as ripple structures [3].
[1] C. Diddens and S. J. Linz, EPL, 104 (2013) 17010
[2] C. Diddens and S. J. Linz, Eur. Phys. J. B, 86 (2013) 397
[3] M. Osthues, C. Diddens and S. J. Linz, (in preparation)