Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 23: Quantum Chaos
DY 23.12: Vortrag
Mittwoch, 2. April 2014, 18:00–18:15, ZEU 146
Resonance Assisted Tunneling in Mixed Systems using Integrable Approximations — •Clemens Löbner1,2, Julius Kullig1, Normann Mertig1,2, Steffen Löck1,3, Arnd Bäcker1,2, and Roland Ketzmerick1,2 — 1Technische Universität Dresden, Institut für Theoretische Physik, 01062 Dresden — 2MPI für Physik komplexer Systeme, 01187 Dresden — 3Technische Universität Dresden, Oncoray - National Center for Radiation Research in Oncology, 01307 Dresden
Generic Hamiltonian systems have a mixed phase space in which regions of regular motion are embedded in regions of chaotic motion. Quantum mechanically these regions are connected by regular-to-chaotic tunneling. In the presence of nonlinear resonances, this effect is strongly enhanced and is therefore called resonance-assisted tunneling.
We present a theoretical description of resonance-assisted tunneling in mixed systems using an integrable approximation of the regular region. We introduce a new method [1] based on canonical transformations to construct the integrable approximation and extend this method to systems with resonances. The resulting approximation is used for the prediction of regular-to-chaotic tunneling rates. We show results for the generic standard map.
[1] C. Löbner, S. Löck, A. Bäcker, and R. Ketzmerick: Phys. Rev. E 88, 062901 (2013)