Dresden 2014 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
O: Fachverband Oberflächenphysik
O 21: Transport: Quantum Dots, Quantum Wires, Point Contacts II (TT jointly with O)
O 21.7: Talk
Monday, March 31, 2014, 17:45–18:00, HSZ 204
Hybrid Microwave Cavity Heat Engine — Christian Bergenfeldt1, Peter Samuelsson1, •Björn Sothmann2, Christian Flindt2, and Markus Büttiker2 — 1Physics Department, Lund University, Box 118, SE-22100 Lund, Sweden — 2Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland
We propose and analyze the use of hybrid microwave cavities as quantum heat engines. A possible realization consists of two macroscopically separated quantum dot conductors coupled capacitively to the fundamental mode of a microwave cavity. We demonstrate that an electrical current can be induced in one conductor through cavity-mediated processes by heating up the other conductor. The heat engine can reach Carnot efficiency with optimal conversion of heat to work. When the system delivers the maximum power, the efficiency can be a large fraction of the Carnot efficiency. The heat engine functions even with moderate electronic relaxation and dephasing in the quantum dots. We provide detailed estimates for the electrical current and output power using realistic parameters.
C. Bergenfeldt, P. Samuelsson, B. Sothmann, C. Flindt and M. Büttiker, arXiv:1307.4833v1 (2013).