Dresden 2014 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
O: Fachverband Oberflächenphysik
O 96: Atomic Layer Deposition (DS jpointly with O)
O 96.3: Talk
Friday, April 4, 2014, 10:15–10:30, CHE 91
New opportunities with Plasma enhanced atomic layer deposition (PE-ALD) of oxides — •Massimo Tallarida1, Karsten Henkel1, Hassan Gargouri2, Jörg Häberle1, Bernd Gruska2, Matthias Arens2, and Dieter Schmeisser1 — 1Brandenburg University of Technology, Konrad Wachsmann Allee, 17, 03046, Cottbus Germany — 2Sentech Instruments GmbH, Schwarzschildstrasse 2, 12489 Berlin, Germany
Thermal Atomic layer deposition (T-ALD) of oxides is obtained by the pulsed alternation of a metal precursor and an oxygen source, typically H2O or O3, and the reactions leading to ALD are thermally activated. With plasma enhanced ALD (PE-ALD), instead, the oxygen source is represented by an oxygen-containing plasma. The higher reactivity of the plasma-generated species extend the capabilities of ALD: improved film quality and increased flexibility in process conditions, such as growth at low temperature, are typical advantages of PE-ALD over T-ALD. We report on results on the preparation of thin (<100 nm) aluminum oxide (Al2O3) films on silicon substrates using T-ALD and PE-ALD in the SENTECH SI ALD LL system. Films were deposited in the temperature range between room temperature (RT) and 200∘C. We characterized the films with spectroscopic ellipsometry (thickness, refractive index, growth rate) over 4" wafers and with X-ray photoelectron spectroscopy. All films resulted in a high degree of homogeneity, independent of the deposition temperature. Investigations with capacitance-voltage and conductance-voltage measurements showed a very low interface states density for the PE-ALD films.