Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DD: Fachverband Didaktik der Physik
DD 9: Hochschuldidaktik 1
DD 9.2: Vortrag
Montag, 17. März 2014, 16:50–17:10, Casino 1.812
Elektron, Proton und die Rydbergenergie — •Manfred Kunz — Reinhardtstraße 11 04318 Leipzig
Der äußere Photoeffekt wird als Drei-Teilchen-Stoß dargestellt nach StD. D.P. G. Meserle. Dieser Stoß dient als Modell für die Anregung des H-Atoms, wobei der niedrigste angeregte Zustand (Lyman-alpha Linie) betrachtet wird. Dieser kann prinzipiell mit dem Franck-Hertz-Versuch bestimmt werden und beträgt 3/4 der Ablösungsenergie (Austrittsarbeit). Die Bindungsenergie E des Grundzustands beim H-Atom wird durch den Stoß (bzw. durch das Photon) auf 1/4 geschwächt. Energie und Impuls des Übergangs Lyman-alpha 1-2 sowie des Grenzübergangs Lyman 1-oo werden betrachtet. Die Bindungsenergie E ist gleich der Rydbergenergie, deren relativistisches Massenäquivalent E/c^2= Mryd beträgt. Ungeachtet, ob es sich dabei um ein Quasiteilchen oder um eine verteilte Quasimasse handelt, werden Masse und Radius (gemäß des Bohrschen Atommodells) untersucht. Es gibt eine Konstanz F des Masse-Radius-Produkts, die wohl generell bei atomaren, subatomaren und kosmischen Körpern gilt. Die besagte Konstanz F ermöglicht, ausgehend von der jeweiligen Masse Mx eine Berechnung des Protonenradius Rp, des Planckradius, des Gravitationsradius und des Radius Rryd des Rydbergteilchens. Letzteres eröffnet auch mit der Elektronenmasse me den Zugang zur Feinstrukturkonstanten alfa, denn me/2*alfa^2=Mryd und Mryd*Rryd=F sowie Mp*Rp=F. Natürlich lässt sich damit auch das Verhältnis mp/me sehr genau ermitteln. Nach Dirk Freyling gilt im Rahmen einer umfangreichen Theorie mit einer Konstante f4=4 Meter sogar Rp=Rryd^2/f4.