Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 23: Reaction-Diffusion Systems
DY 23.5: Vortrag
Dienstag, 17. März 2015, 15:30–15:45, BH-N 243
Critical coupling and bifurcations in two-dimensional oscillator arrays undergoing the Belousov-Zhabotinsky reaction — •Claudia Lenk and J. Michael Köhler — Institut für Chemie und Biotechnologie, TU Ilmenau, Ilmenau, Deutschland
Spatio-temporal dynamics of many biological and chemical systems depend on coupling of individual oscillators e.g. catalyst particles, the heart cells during atrial fibrillation or neuronal networks. In these systems, irregular patterns and bifurcations of frequency are most often observed in regions of critical coupling strength. To elucidate the influence of local coupling of individual oscillators we perform on one hand experiments of the Ferroin-catalyzed Belousov-Zhabotinsky reaction in silica gels and on the other hand numerical calculations of the FitzHugh-Nagumo (FHN) model, both with a catalyst distribution in form of a micro spot pattern. We observe transitions to multiple period oscillations and amplitude oscillations in dependence of spot distance and size. Furthermore, these transitions can also be observed due to gradients of the spot distance for parameter ranges, which otherwise do not show these bifurcations. The identifiation of bifurcation parameters is done in the numerical simulations. Experimental results confirm the numerical analysis.