Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 28: Nonlinear Dynamics, Synchronization and Chaos - Part I
DY 28.3: Vortrag
Mittwoch, 18. März 2015, 10:00–10:15, BH-N 128
Permutation symmetries and phase wave synchronization on networks of heterogeneous chemical oscillators — •Jan Frederik Totz1, Harald Engel1, and Kenneth Showalter2 — 1Technische Universität Berlin, Berlin, Deutschland — 2West Virginia University, Morgantown, USA
Synchronization phenomena are observed in a wide variety of systems ranging from synchronizing fireflies through firing neurons to electrical power grids [1,2]. Recently it has been demonstrated that permutation symmetries of the underlying oscillator networks are of fundamental importance for zero-lag synchronization patterns [3]. In this contribution, we address the question: What role do network symmetries play, when the frequency detuning of the individual oscillators is too large to allow for zero-lag synchronization? Experiments and simulations on networks of discrete chemical relaxation oscillators [4] reveal transitions from incoherence through partial synchronization to phase waves following symmetry clusters as a function of coupling strength.
[1] P. C. Bressloff, Waves in Neural Media: From Single Neurons to Neural Fields (Springer, 2014)
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2003)
L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Nat. Commun. 5, 4079 (2014)
M. R. Tinsley, S. Nkomo, and K. Showalter, Nat. Phys. 8, 662 (2012)