Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 28: Nonlinear Dynamics, Synchronization and Chaos - Part I
DY 28.6: Vortrag
Mittwoch, 18. März 2015, 10:45–11:00, BH-N 128
Kuramoto Dynamics in Hamiltonian Systems — Dirk Witthaut1,2 and •Marc Timme2,3 — 1Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen — 2Effciency, Emergence and Economics of Future Supply Networks, FZ Julich — 3Institute for Nonlinear Dynamics, University of Goettingen
The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony (phase locking). Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on N-dimensional invariant manifolds, http://dx.doi.org/10.1103/PhysRevE.90.032917 (2014). We show that locking of the phase of one oscillator on a Kuramoto manifold to the average phase emerges where the transverse Hamiltonian action dynamics of that specific oscillator becomes unstable. Moreover, the inverse participation ratio of the Hamiltonian dynamics perturbed off the manifold indicates the global synchronization transition point for finite N more precisely than the standard Kuramoto order parameter. The uncovered Kuramoto dynamics in Hamiltonian systems thus distinctly links dissipative to conservative dynamics, with options of experimental realization (Witthaut et al., in prep.).