Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
GR: Fachverband Gravitation und Relativitätstheorie
GR 18: Black Holes
GR 18.6: Vortrag
Freitag, 20. März 2015, 12:50–13:10, H 2013
Generalized Uncertainty Principle and Black Holes — •Marco Knipfer1,2, Sven Köppel1,2, Maximiliano Isi3, Jonas Mureika4, Piero Nicolini1,2, and Marcus Bleicher1,2 — 1Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Deutschland — 2Frankfurt Institute for Advanced Studies, Frankfurt am Main, Deutschland — 3Physics Department, California Institute of Technology, Pasadena, CA, United States — 4Department of Physics, Loyola Marymount University, Los Angeles, CA, United States
Many of the current endeavors of finding a quantum theory of gravity introduce two basic adjustments: Additional space dimensions and the existence of a minimal length of about the Planck length ℓp≈ 1.6 × 10−36m. According to this line of reasoning we modify the Heisenberg uncertainty relation into the generalized uncertainty principle (GUP) Δ x Δ p ≥ ℏ/2[1+β (Δ p)2]. To evaluate the effects of the GUP in curved space, we consider a non-local gravity Lagrangian. The resulting field equations depend on a non-local operator not known a priori. We show that a particular profile of such an operator can reproduce GUP effects. Specifically we derive a GUP improved Schwarzschild metric. Even if the curvature singularity is just smoothened, the thermodynamics becomes regular, i.e., the temperature no longer diverges in the final evaporation stage and a cold black hole remnant forms.