|
09:30 |
TT 86.1 |
A dual-fermion analysis of the Anderson-Hubbard model — •Patrick Haase, Shuxiang Yang, Thomas Pruschke, Juana Moreno, and Mark Jarrell
|
|
|
|
09:45 |
TT 86.2 |
Antiferromagnetic phase transition in the Hubbard model from diagrammatic multi-scale perspective — •Daniel Hirschmeier, Hartmut Hafermann, Emanuel Gull, Alexander Lichtenstein, and Andrey Antipov
|
|
|
|
10:00 |
TT 86.3 |
Gutzwiller variational wave function for a two-orbital Hubbard model on a square lattice — •Kevin zu Münster
|
|
|
|
10:15 |
TT 86.4 |
Interplay between Point-Group Symmetries and the Choice of the Bloch Basis in Multiband Models — •Stefan A. Maier and Carsten Honerkamp
|
|
|
|
10:30 |
TT 86.5 |
Towards high-performance functional renormalization group calculations for interacting fermions — •Julian Lichtenstein, Stefan A. Maier, Carsten Honerkamp, Edoardo Di Napoli, and Daniel Rohe
|
|
|
|
10:45 |
TT 86.6 |
Summing parquet diagrams via the functional renormalization group: x-ray problem revisited1 — •Philipp Lange, Casper Drukier, Anand Sharma, and Peter Kopietz
|
|
|
|
11:00 |
TT 86.7 |
Steps towards the application of two-particle irreducible functional renormalization group — •Jan Frederik Rentrop, Severin Georg Jakobs, and Volker Meden
|
|
|
|
11:15 |
|
15 min. break.
|
|
|
|
11:30 |
TT 86.8 |
From infinite to two dimensions through the functional renormalization group — •Ciro Taranto, Sabine Andergassen, Johannes Bauer, Karsten Held, Andrey Katanin, Walter Metzner, Georg Rohringer, and Alessandro Toschi
|
|
|
|
11:45 |
TT 86.9 |
Correlated starting points for the functional renormalization group — •Nils Wentzell, Ciro Taranto, Andrey Katanin, Alessandro Toschi, and Sabine Andergassen
|
|
|
|
12:00 |
TT 86.10 |
The virial theorem within many-body extensions of density functional theory — •Andreas Östlin, Wilhelm Appelt, Liviu Chioncel, and Levente Vitos
|
|
|
|
12:15 |
TT 86.11 |
Quantum electrodynamical time-dependent density functional theory on a lattice — •Mehdi Farzanehpour and Ilya Tokatly
|
|
|
|
12:30 |
TT 86.12 |
Inverse Mean Field theories — •Peter Schmitteckert
|
|
|
|
12:45 |
TT 86.13 |
Reduced density matrix functional theory via a wave function based approach — •Robert Schade, Peter Bloechl, and Thomas Pruschke
|
|
|