DPG Phi
Verhandlungen
Verhandlungen
DPG

Heidelberg 2015 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

HK: Fachverband Physik der Hadronen und Kerne

HK 22: Instrumentation 8

HK 22.6: Vortrag

Dienstag, 24. März 2015, 15:45–16:00, M/HS2

Kalman Filter based algorithms for PANDA@ FAIR — •Elisabetta Prencipe1, James Ritman1, and Johannes Rauch2 for the PANDA collaboration — 1IKP - Forschungszentrum Juelich — 2E18 - Technische Universität München

PANDA at the future FAIR facility in Darmstadt is an experiment with a cooled antiproton beam in a range between 1.5 and 15 GeV/c, allowing a wide physics program in nuclear and particle physics. High average reaction rates up to 2·107 interactions/s are expected. PANDA is the only experiment worldwide, which combines a solenoid field and a dipole field in an experiment with a fixed target topology. The tracking system must be able to reconstruct high momenta in the laboratory frame. The tracking system of PANDA involves the presence of a high performance silicon vertex detector, a GEM detector, a Straw-Tubes central tracker, a forward tracking system, and a luminosity monitor. The first three of those, are inserted in a solenoid homogeneous magnetic field (B=2T), the latter two are inside a dipole magnetic field (B=2Tm), The offline tracking algorithm is developed within the PandaRoot framework, which is a part of the FAIRRoot project. The algorithm is based on a tool containing the Kalman Filter equations and a deterministic annealing filter (GENFIT). The Kalman-Filter-based routines can perform extrapolations of track parameters and covariance matrices. In GENFIT2, the Runge-Kutta track representation is available. First results of an implementation of GENFIT2 in PandaRoot are presented. Resolutions and efficiencies for different beam momenta and different track hypotheses are shown.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2015 > Heidelberg