DPG Phi
Verhandlungen
Verhandlungen
DPG

Heidelberg 2015 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 15: Poster: Quantum Optics and Photonics I

Q 15.85: Poster

Montag, 23. März 2015, 17:00–19:00, C/Foyer

Propagation of nanofiber-guided light through an array of atoms — •Fam Le Kien1,2 and Arno Rauschenbeutel21Wolfgang Pauli Institute, Oskar Morgensternplatz 1, 1090 Vienna, Austria — 2VCQ, TU Wien, Atominstitut, Stadionallee 2, 1020 Vienna, Austria

We study the propagation of nanofiber-guided light through an array of atomic cesium, taking into account the transitions between the hyperfine levels 6S1/2F=4 and 6P3/2F′=5 of the D2 line. We derive the coupled-mode propagation equation, the input-output equation, the scattering matrix, the transfer matrix, and the reflection and transmission coefficients for the guided field in the linear, quasistationary, weak-excitation regime. We show that, when the initial distribution of populations of atomic ground-state sublevels is independent of the magnetic quantum number, the quasilinear polarizations along the principal axes x and y, which are parallel and perpendicular, respectively, to the radial direction of the atomic position, are not coupled to each other in the linear coherent scattering process. When the guided probe field is quasilinearly polarized along the major principal axis x, forward and backward scattering have different characteristics. When the array period is far from the Bragg resonance, the backward scattering is weak. Under the Bragg resonance, most of the guided probe light can be reflected back in a broad region of field detunings even though there is an irreversible decay channel into radiation modes. When the atom number is large enough, two different band gaps may be formed, whose properties depend on the polarization of the guided probe field.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2015 > Heidelberg