Hannover 2016 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
A: Fachverband Atomphysik
A 26: Ultra-cold atoms, ions and BEC II (with Q)
A 26.8: Vortrag
Mittwoch, 2. März 2016, 16:15–16:30, f303
Satisfying the Einstein-Podolsky-Rosen criterion with massive particles — Jan Peise1, Ilka Kruse1, •Karsten Lange1, Bernd Lücke1, Luca Pezzè2, Jan Arlt3, Wolfgang Ertmer1, Klemens Hammerer4, Luis Santos4, Augusto Smerzi2, and Carsten Klempt1 — 1Institut für Quantenoptik, Leibniz Universität Hannover, Germany — 2QSTAR, INO-CNR and LENS, Firenze, Italy — 3Institut for Fysik og Astronomi, Aarhus Universitet, Denmark — 4Institut für Theoretische Physik, Leibniz Universität Hannover, Germany
Entanglement was first discussed in the thought experiment of Einstein, Podolsky, and Rosen (EPR). They considered a quantum-mechanical state consisting of two maximally correlated particles. A measurement of one subsystem seemingly allows for a prediction of the second subsystem with a precision beyond the Heisenberg uncertainty relation. We utilize spin-changing collisions in a 87Rb BEC to generate a two-mode entangled state. By employing an atomic homodyne detection, we verify the EPR correlation according to Reid’s criterion. We find an EPR entanglement parameter of 0.18 which is 2.4 standard deviations below the threshold of 1/4. This demonstration of continuous-variable EPR correlations is the first realization with massive particles [1]. Furthermore, the state is fully characterized by a tomographic reconstruction of the underlying many-particle quantum state. This reconstruction is obtained via a Maximum Likelihood algorithm.
[1] J. Peise et al., Nat Commun 6, 8984 (2015)