Hannover 2016 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
Q: Fachverband Quantenoptik und Photonik
Q 8: Quantum Information: Concepts and Methods II
Q 8.3: Vortrag
Montag, 29. Februar 2016, 15:00–15:15, e214
Heisenberg-Weyl basis observables and related applications — •Ali Asadian1, Pauli Erker2, Otfried Guehne1, Marcus Huber2, and Claudio Kloeckl2 — 1Naturwissenschaftlich-Technische Fakultaet, Walter-Flex-Straße 3, Siegen, Germany — 2Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
The Bloch vector provides a very useful geometrical representation of quantum states for characterizing their properties. We establish a new basis of observables constructed by a suitable combination of the non-Hermitian generalization of the Pauli matrices, the Heisenberg-Weyl operators. This allows us to identify a (Hermitian) Bloch representation for an arbitrary density operator of finite, as well as infinite dimensional systems in terms of complete set of Heisenberg-Weyl observables. Compared to the canonical basis of Gell-Mann operators, the Heisenberg-Weyl based observables exhibit number of advantageous properties which we highlight in the context of entanglement detection.