Regensburg 2016 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
DS: Fachverband Dünne Schichten
DS 53: Postersession DS/HL
DS 53.28: Poster
Thursday, March 10, 2016, 16:00–19:00, Poster A
Nanomechanical investigation of a thin-film multi-layered electroceramic/metal-organic framework optical device — •James P Best1, Engelbert Redel2, Hartmut Gliemann2, Christof Wöll2, and Johann Michler1 — 1EMPA, Thun, Switzerland — 2KIT-IFG, Karlsruhe, Germany
Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials. For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.