Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 15: Chimera State: Coherence-Incoherence Patterns in Complex Networks (joint symposium DY/SOE/BP)
DY 15.2: Hauptvortrag
Dienstag, 8. März 2016, 10:00–10:30, H1
Chimera patterns: Influence of topology, noise, and delay — •Eckehard Schöll — Institut für Theoretische Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
Chimera patterns, which consist of coexisting spatial domains of coherent and incoherent dynamics, are studied in networks of oscillators involving amplitude as well as phase dynamics, complex hierarchical (fractal) topologies, noise, and delay. We show that a plethora of novel chimera patterns arise if one goes beyond the Kuramoto phase oscillator model. For the FitzHugh-Nagumo system, the Van der Pol oscillator, and the Stuart-Landau oscillator with symmetry-breaking coupling we find various multi-chimera patterns [1], including amplitude chimeras and chimera death [2]. To test the robustness of chimera patterns, we study small-world and hierarchical topologies. We also address the robustness of amplitude chimera states in the presence of noise [3], and the emergence of coherence-resonance chimeras [4]. If delay is added, the lifetime of transient chimeras can be drastically increased, and novel phenomena like stochastic resonance of delayed-feedback chimeras can arise.
[1] I. Omelchenko et al., Phys. Rev. Lett. 110, 224101 (2013). I. Omelchenko et al., Phys. Rev. E 91, 022917 (2015). I. Omelchenko et al., Chaos 25, 083104 (2015). [2] A. Zakharova, M. Kapeller, and E. Schöll, Phys. Rev. Lett. 112, 154101 (2014). [3] S. Loos, J. C. Claussen, E. Schöll, and A. Zakharova, Phys. Rev. E (2016), arXiv:1508.04010v2. [4] N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll (2016), arXiv:1512.07036.